1,2-Ethanedithiol, 1,3-propanedithiol, 1,4-butanedithiol, and 1,5-pentanedithiol distearates. To 17 g. (0.06 mol.) of stearic acid and 100 ml. of petroleum ether in a 200-ml. round bottomed flask, fitted with a reflux condenser, was added 12 g. of PCls. The mixture was boiled under gentle reflux for 2 hr., cooled, and washed rapidly with four 25-ml. portions of ice water, and then dried over anhydrous Na_2SO_4 .⁷ To the dried solution of the acid chloride in petroleum ether was added a mixture of 0.03 mol. of the appropriate mercaptan and 0.06 mol. of pyridine in 100 ml. of petroleum ether. The rest of the procedure is identical to that used above.

2-Mercaptoethanol distearate. Stearoyl chloride was prepared by the method of Youngs *et al.* as described above. After the water wash and drying, the petroleum ether was removed by distillation and equivalent amounts of 2mercaptoethanol and pyridine were added. The rest of the procedure is identical to that used above.

Chromatography. Analytical samples of the dithiol and monothiol diesters were chromatographed, using 20 g. of Florisil per gram of ester. The column was eluted with a total of 400 ml. of a solution containing 30% benzene-70%petroleum ether. The 1,2-ethanedithiol diesters were eluted with a total of 400 ml. of a solution containing 50% benzene-50% petroleum ether. After the solvent was removed by distillation, the product was crystallized from acetone-alcohol or acetone-benzene.

Reaction of methanol with 1,2-ethanedithiol and 1,5-pentanedithiol dioctadecanoate. To 0.005 mol. of 1,2-ethanedithiol or 1,5-pentanedithiol dioctadecanoate in a 200-ml. round bottomed flask, fitted with a reflux condenser, was added 0.05 g. of sodium methoxide and 70 ml. of methanol and the mixture was heated on a steam bath for 12 hr. At the end of the heating period, the methanol was removed by distillation and the product was dissolved in 100 ml. of ether. After the ether solution was washed with three 50ml. portions of water, it was dried over anhydrous sodium sulfate. The ether then was removed by distillation and the methyl stearate was crystallized from methanol. The yield of product was 60-65% of the theoretical amount. Admixture of the products with an authentic sample of methyl stearate showed no depression of melting point.

DEPARTMENT OF CHEMISTRY DREXEL INSTITUTE OF TECHNOLOGY PHILADELPHIA 4, PA.

(7) C. G. Youngs, A. Epp, B. M. Craig, and H. R. Sallans, J. Am. Oil Chem. Soc., 24, 107 (1957).

Benzilates and Related Esters of Aminophenylethanols

SEYMOUR L. SHAPIRO, HAROLD SOLOWAY, AND LOUIS FREEDMAN

Received May 28, 1959

In continuation of our exploration of derivatives of the aminophenylethanols,¹ a series of basic esters (Table I) of the formula $R_1COOCH(C_6H_5)$ - $CH_2NR_2R_3.R_4X$ (I) has been synthesized and examined for pharmacological activity.

Esters evaluated included benzilates² as well as variants of R_1CO — of lesser molecular bulk.³ Structural relationships with proven active drugs suggested examination of the basic esters I as

(1) S. L. Shapiro, H. Soloway, and L. Freedman, J. Am. Chem. Soc., 80, 6060 (1958).

central nervous system depressants,⁴ anti-tremorine agents,⁵ and local anesthetics.^{3d}

Treatment of the aminophenylethanol¹ with the acid chloride R₁COCl gave the basic ester I, either isolated directly as the hydrochloride, or converted to its free base which was distilled. The corresponding benzilates were prepared from the α -chloro- α, α -diphenylacetates by hydrolysis.⁶

Selected compounds showed activity as anesthetic agents,⁷ reversed the neurotoxicity of tremorine,⁸ depressed motor activity,⁹ and were active as hypotensive agents.¹⁰

EXPERIMENTAL¹¹

The acid chlorides were available commercially, or were processed as described in the literature in the instance of ω cyclohexylbutyryl chloride,¹² and α -chloro- α , α -diphenylacetyl chloride.¹³

(2) (a) J. P. Long and A. M. Lands, J. Pharmacol. Exp. Therap., 120, 46 (1957); (b) F. Leonard and L. Simet, J. Am. Chem. Soc., 77, 2855 (1955); (c) R. B. Moffett, J. L. White, B. D. Aspergren, and F. E. Visscher, J. Am. Chem. Soc., 77, 1565 (1955); (d) F. F. Blicke and J. H. Biel, J. Am. Chem. Soc., 76, 3163 (1954); (e) A. P. Phillips, J. Am. Chem. Soc., 76, 1955 (1954); (f) H. A. Smith, C. A. Buehler, and K. V. Nayak, J. Org. Chem., 21, 1423 (1956); (g) A. W. Weston, R. W. DeNet, and R. J. Michaels, Jr., J. Am. Chem. Soc., 75, 4006 (1953); (h) G. R. Treves and F. C. Testa, J. Am. Chem. Soc., 74, 46 (1952).

(3) (a) R. B. Burtner, Medicinal Chemistry, Vol. I, John Wiley & Sons, New York, N. Y., 1951, page 151;
(b) H. Wunderlich and H. Barth, *Die Pharmazie*, 11, 261
(1956); (c) S. L. Shapiro, H. Soloway, E. Chodos, and L. Freedman, J. Am. Chem. Soc., 81, 201 (1959); (d) S. L. Shapiro, H. Soloway, E. Chodos, and L. Freedman, J. Am. Chem. Soc., 81, 203 (1959).

(4) C. H. Holten and V. Larsen, Acta Pharmacol. Toxicol., 12, 346 (1956).

(5) (a) J. J. Denton, H. P. Schedl, V. A. Lawson, and W. B. Neier, J. Am. Chem. Soc., 72, 3795 (1950) and preceding papers; (b) M. Harfenist and E. Magnien, J. Am. Chem. Soc., 78, 1060 (1956).

(6) F. F. Blicke, J. A. Faust, and H. Raffelson, J. Am. Chem. Soc., 76, 3161 (1954).

(7) Following the procedure outlined in ref. 3d, the data were reported in this order: compound no. of Table I/LD_{min} mg./kg./ANED₅₀ mg./ml.: 37/1000/7; 38/750/5.5; 39/100/6.7; 41/>1000/14; 43/1000/2.4; 46/1000/3.5; 50/750/1.5.

(8) Following the procedure outlined in ref. 3d, the compound No. of Table I/LD_{min} mg./kg./TED₅₀ mg./kg. was noted: 34/750/75; 35/100/18; 36/450/89; 40/750/100; 49/250/56; 54/200/52.

(9) Following the procedure given by S. L. Shapiro, I. M. Rose, E. Roskin, and L. Freedman, J. Am. Chem. Soc., 80, 1648 (1958), the compound No. of Table I/LD_{min} mg./kg./% depression of motor activity/test dose mg./kg. is given: 35/100/34/20; 40/750/30/100; 52/80/24/20.

(10) Following the procedure given by S. L. Shapiro, H. Soloway, and L. Freedman, J. Am. Chem. Soc., 80, 2743 (1958), compound 47 had 3+ activity and compounds 35, 36, 42, 45, 49, and 52 had 2+ activity.

(11) Descriptive data shown in the table are not reproduced in the Experimental section. Typical examples of the synthesis are given.

(12) J. S. Mihina and R. M. Herbst, J. Org. Chem., 15, 1082 (1950).

(13) F. E. King and D. Holmes, J. Chem. Soc., 164 (1947).

$\begin{array}{c} \textbf{TABLE} \quad \textbf{I} \\ \textbf{R}_1 \textbf{COOCH}(\textbf{C}_6\textbf{H}_5)\textbf{C}\textbf{H}_2 \textbf{N}\textbf{R}_2\textbf{R}_3.\textbf{R}_4\textbf{X} \end{array}$

		<u>.</u>				011(06	$H_{5})CH_{2}NR_{2}R_{3}.R$.4∠ x		Analys	d 0%		
				M.P. ^{<i>a</i>} or B.P.	•	Yield, ^c		Cai	bon	Analyses, ^d % Hydrogen		Niti	rogen
No.	\mathbf{R}_2	\mathbf{R}_{3}	R_4X	(Mm.)			Formula	Calcd.	Found	Calcd.		·····	
	$R_1 = C$	»F7											
1	-	C_2H_5	HCl	117–118	A	17	$\mathrm{C_{16}H_{19}ClF_7NO_2}$	45 1	45.3	4.5	5.1	3.3	3.1
	$R_1 = C$	$_{6}H_{5}CH_{2}$											
2	-	C ₂ H ₅	HCl	146-148	В	43	$C_{20}H_{26}ClNO_2$	69.0	69.2	7.5	7.3		
3	C_2H_5 —	C_2H_5	C_2H_5I EBA ^e	132-134	A C	$\begin{array}{c} 40 \\ 49 \end{array}$	$C_{22}H_{30}INO_2$	56.5	56.6	6.5	6.5	$\begin{array}{c} 3.0 \\ 2.9 \end{array}$	2.8
4		C_2H_5 —	EDA	162-163	U	49	$C_{24}H_{32}BrNO_4$	60.2	60.1	6.7	6.8	2.9	2.8
		$_{6}\mathrm{H}_{11}\mathrm{CH}_{2}$											
5	C_2H_5 —	C_2H_5		155-157 (0.6)		56							
6		C_2H_5	Pic ^g	76 - 78	D		$C_{26}H_{34}N_4O_9$	57.1	57.4	6.2	6.2		
$\frac{7}{8}$	C ₂ H ₅ (C_2H_5 $(CH_2)_4$	EBA ^e HCl	163 - 165 195 - 197	\mathbf{B} E	68 66	$C_{24}H_{38}BrNO_4 \\ C_{20}H_{30}ClNO_2$	59.5	$59.7 \\ 68.1$	7.9 8.6	7.8 8.4	$\begin{array}{c} 2.9 \\ 4.0 \end{array}$	$3.3 \\ 4.0$
9	($(CH_2)_4$ —	$\mathrm{CH}_3\mathrm{Br}$	189 - 191	С	52	$\mathrm{C}_{21}\mathrm{H}_{32}\mathrm{BrNO}_{2}$	61.3	61.4	8.1	7.6		
$\frac{10}{11}$		$(CH_2)_4$ $(CH_2)_4$	C₂H₅Br EBA ^e	157 - 158 150 - 151	A A	$\begin{array}{c} 67 \\ 57 \end{array}$	$\mathrm{C}_{22}\mathrm{H}_{34}\mathrm{BrNO}_2\ \mathrm{C}_{24}\mathrm{H}_{36}\mathrm{BrNO}_4$	$\begin{array}{c} 62.3 \\ 59.7 \end{array}$	$\begin{array}{c} 62.3 \\ 60.2 \end{array}$	$8.1 \\ 7.5$	7.9 7.3	2.9	2.8
	$B_1 = C_0$	H5CH2CH2-											
12		C_2H_5	HCl	114-116	\mathbf{F}	69	$\mathrm{C}_{21}\mathrm{H}_{28}\mathrm{ClNO}_2$	69.7	70.0	7.8	7.6		
13		C_2H_5	CH₃Br	127-129	A	38	$\mathrm{C}_{22}\mathrm{H}_{30}\mathrm{BrNO}_2$	62.9	63.0	7.2	7.3	3.3	3.3
14		C ₂ H ₅ —	EBA ^e	129–132	Α	47	$C_{25}H_{34}BrNO_4$	61.0	61.3	7.0	6.9	2.8	2.7
15	-	$C_{6}H_{5}CH_{2}$	H ₂	146 - 150		31	C. H. NO.	77.8	77.9	9.6	Q /	4.1	3.8
10		C_2H_5 —		(0.1)			$\mathrm{C}_{22}\mathrm{H}_{29}\mathrm{NO}_{2}$			8.6	8.4		
$16 \\ 17$		C_2H_5 (CH ₂) ₄	${ m CH_3Br} { m HCl}$	132-133 197-198	A D	$\frac{39}{69}$	$\mathrm{C_{23}H_{32}BrNO_2}\ \mathrm{C_{22}H_{28}ClNO_2}$	63.6	63.2	7.4	7.5	3.2 3.8	3.5 3.6
18	($(CH_2)_4$	CH₃Br	184 - 185	\mathbf{C}	65	$\mathrm{C}_{23}\mathrm{H}_{30}\mathrm{BrNO}_{2}$					3.2	3.1
19	($(CH_2)_4$ —	C_2H_5Br	125-127	А	55	$\mathrm{C}_{24}\mathrm{H}_{32}\mathrm{BrNO}_2$	64.6	64.9	7.2	7.2	3.1	3.3
	-	$C_6H_5CH(C_2H_5)$											
20	C_2H_5	C_2H_5		142-146 (0.03)		92	$\mathrm{C}_{22}\mathrm{H}_{29}\mathrm{NO}_{2}$	77.8	77.9	8.6	8.7	4.1	3.9
21	•	$(CH_2)_4$	HCl	188-190		49	$C_{22}H_{28}ClNO_2$	70.7	71.1	7.6	7.3	3.8	4.0
$\frac{22}{23}$		$(CH_2)_4$	CH₃Br C₂H₅Br	153-155 173-174	A D	$\begin{array}{c} 67 \\ 54 \end{array}$	$\mathrm{C}_{23}\mathrm{H}_{30}\mathrm{BrNO}_2\ \mathrm{C}_{24}\mathrm{H}_{32}\mathrm{BrNO}_2$	$\begin{array}{c} 63.9\\ 64.6 \end{array}$	$\begin{array}{c} 63.6 \\ 64.5 \end{array}$	$7.0 \\ 7.2$	$egin{array}{c} 6.5 \ 7.2 \end{array}$	$rac{3.2}{3.1}$	$\begin{array}{c} 2.9 \\ 3.1 \end{array}$
	$R_1 = C$	$C_6H_{11}CH_2CH_2C$	$H_2 - f$										
24	CH₃—		HCl	175-178		61	$C_{14}H_{28}ClNO_2$	60.5	60.0	10.2	10.0		
$\frac{25}{27}$		CH_3 — $(CH_2)_4$ —	CH₃I HCl	143-145 182-184		$\begin{array}{c} 60 \\ 75 \end{array}$	$\begin{array}{c} \mathrm{C_{21}H_{34}INO_2} \\ \mathrm{C_{22}H_{34}ClNO_3} \end{array}$	47.0	47.2		8.0 9.3		
$\frac{27}{28}$	($(CH_2)_4$	CH₃I	118-121	\mathbf{G}	73 72	$C_{23}H_{36}INO_2$	69.5 56.9	57.0	9.0 7.5	$\frac{9.3}{7.4}$		
$\frac{29}{30}$		$(CH_2)_4$ $(CH_2)_5$	C₂H₅Br HCl	157 - 159 128 - 131	H B	$13 \\ 66$	${ m C_{24}H_{38}BrNO_2} { m C_{23}H_{36}ClNO_2}^h$	$\begin{array}{c} 63.7 \\ 65.1 \end{array}$	$\begin{array}{c} 63.5\\ 64.6 \end{array}$	$\begin{array}{c} 8.5 \\ 10.3 \end{array}$	$\begin{array}{c} 8.4 \\ 10.4 \end{array}$	3.0	2.7
00		$C_6H_5)_2CH$	101	120 101	D	00	0231136011102	00.1	01.0	10.0	10.4		
31	- 、	$C_{2}H_{5}$		194-195		74	$\mathrm{C_{26}H_{29}NO_2}$	80.6	80.3	7.5	7.3	3.6	3.8
32	CaH	C_2H_5	$\mathrm{CH}_{3}\mathrm{I}$	(0.2) 161–163	D	63	$\mathrm{C}_{27}\mathrm{H}_{32}\mathrm{INO}_2$					2.7	2.8
33		C_2H_5	C_2H_5I	152 - 157		48	$C_{28}H_{34}INO_2$	61.9	61.9	6.3	6.4	2.6	2.6
	$\mathbf{R}_1 = (\mathbf{r}_1)$	$C_6H_5)_2CCl$ —											
	CH ₃ —	CH_{3}	HCl	141-143		25_{25}	$C_{24}H_{25}Cl_2NO_2$	57 E	E7 9		E 0	3.3	3.3
$\frac{35}{36}$	CH_3 — CH_3 —	i-C ₃ H ₇ C ₆ H ₁₁ ^f	$CH_{3}I$ HCl	$151 \\ 185 - 187$	I D	$\begin{array}{c} 25 \\ 59 \end{array}$	${ m C_{17}H_{31}ClINO_2} \ { m C_{29}H_{33}Cl_2NO_2}$	$\frac{57.5}{69.9}$	57.3	5.5 6.7	$5.6 \\ 6.7$	2.5	2.0
$\frac{37}{38}$		C_2H_5 $(CH_2)_4$	HCl HCl	138-139 178-181	${}^{\rm C}_{\rm C}$	$\frac{32}{31}$	$\begin{array}{c} C_{26}H_{29}Cl_2NO_2\\ C_{26}H_{27}Cl_2NO_2 \end{array}$	$\begin{array}{c} 68.1 \\ 68.4 \end{array}$	$\frac{68.3}{68.2}$	$\begin{array}{c} 6.4 \\ 6.0 \end{array}$	$\begin{array}{c} 6.2 \\ 5.9 \end{array}$	3.1 3.1	$\begin{array}{c} 2.7 \\ 3.0 \end{array}$
39	-($(CH_2)_4$ — ⁱ	HCl	182 - 184	C	25	$\mathrm{C}_{26}\mathrm{H}_{27}\mathrm{Cl}_2\mathrm{NO}_2$	68.4	67.9	6.0	5.8		
$\begin{array}{c} 40 \\ 41 \end{array}$		$-(CH_2)_5$ $_2)_2O(CH_2)_2$	HCl HCl	169-171 184-186	A D	$\frac{66}{36}$	${f C_{27}H_{29}Cl_2NO_2}\ {f C_{26}H_{27}Cl_2NO_3}$	$\begin{array}{c} 68.9 \\ 66.1 \end{array}$	$rac{68.2}{66.1}$	$\begin{array}{c} 6.2 \\ 5.8 \end{array}$	$\begin{array}{c} 6.8\\ 6.0 \end{array}$	3.0 3.0	$3.3 \\ 3.1$
42		$-C_6H_5CH_2$	HCl	153 - 155	С	21	$\mathrm{C}_{32}\mathrm{H}_{33}\mathrm{Cl}_2\mathrm{NO}_2$	71.9	72.1	6.2	6.2		

		R₃	R₄X	M.P. ^{<i>a</i>} or B.P. (Mm.)		Yield, ^c %	Formula	Analyses, d $\%$					
No.	R ₂							Carbon		Hydrogen		Nitrogen	
								Calcd.	Found	Calcd.	Found	Calcd.	Found
	$R_1 = (0)$	C ₆ H ₅) ₂ C(OH)-	-										
43	CH3-	CH3	HCl	183-185	С	71	C24H26ClNO3	70.0	70.2	6.4	6.1	3.4	3.1
44	CH₃—	CH3	$CH_{3}I$	176 - 178	\mathbf{C}	69	C ₂₅ H ₂₈ INO ₃	58.0	58.0	5.5	5.5	2.7	2.5
45	CH_3 —	$i-C_3H_7$	HCl	170 - 172	\mathbf{C}	39	C ₂₆ H ₃₀ ClNO ₃	71.0	70.5	6.9	7.0	3.2	2.8
46	C_2H_5 —	C_2H_5	HCl	164 - 165	С	80	C ₂₆ H ₃₀ ClNO ₃	71.0	70.9	6.9	6.9	3.2	3.4
47	C_2H_6 —	$C_2H_5 \rightarrow$	$CH_{3}I$	178 - 179	\mathbf{C}	58	$C_{27}H_{32}INO_3$	59.5	59.3	5.9	6.1	2.6	2.6
48	CH3-	C_6H_{11}	HCl	193 - 196	D	23	C29H34ClNO3	72.6	72.7	7.1	7.2	2.9	3.1
49	CH ₃ —	C_6H_{11} —	$CH_{3}I$	125 - 127	\mathbf{C}	24	C ₃₀ H ₃₆ INO ₃	61.5	61.9	6.2	6.6	$2 \ 4$	2.8
50		$CH_2)_4$	HCl	193 - 195	\mathbf{E}	46	C ₂₆ H ₂₈ ClNO ₃	71.3	71.2	6.4	6.6	3.2	2.8
51	($CH_2)_4$	$CH_{3}I$	141 - 143	С	64	C ₂₇ H ₃₀ INO ₃					2.6	2.7
52	-($CH_2)_4$	EBA^{e}	168 - 169	D	49	C ₃₀ H ₃₄ BrNO ₅	63.4	63.3	6.0	6.2	2.5	2.4
53	($CH_2)_5$ —	HCl	203 - 205	D	49	C27H30CINO3	71.7	71.4	6.7	6.9	3.1	3.0
54		$CH_2)_5$ —	$CH_{3}I$	178-181	\mathbf{C}	43	$C_{28}H_{32}INO_3$	60.3	60.0	5.8	5.6	2.5	2.9
55	(CH ₂	$)_{2}O(CH_{2})_{2}$	HCl	198 - 200	D	65	C26H28CINO4	68.8	69.1	6.2	6.2	3.1	2.8
56	i-C ₃ H ₇		HCl	161 - 163	D	29	C ₃₂ H ₃₆ ClNO ₄ ^f	72.1	71.6	6.8	6.6	2.6	2.8

TABLE I (Continued)

^a Melting points are not corrected. ^b RS = recrystallizing solvent: A = methyl ethyl ketone; B = isopropyl alcoholisopropyl ether; C = isopropyl alcohol; D = ethanol; E = acetonitrile; F = benzene; G = not recrystallized; H = chloroform-ether; I = *n*-propanol. ^c Yields are expressed as % of recrystallized or distilled product. ^d Analyses by Weiler and Strauss, Oxford, England. ^eEBA = ethyl bromoacetate quaternary salt. ^fC₆H₁₁ = cyclohexyl. ^g Pic = picric acid. ^h Chlorine, Calcd.: 10.7. Found: 10.9. ⁱ The compound is derived from the isomeric 2-(1-pyrrolidino)-2-phenylethanol (described in ref. 1). ^j The formula represents a monohydrate.

2-Diethylamino-1-phenylethyl diphenylacetate (Compound 31). To a stirred solution of 23.1 g. (0.1 mol.) of diphenylacetyl chloride in 100 ml. of benzene was added 19.3 g. (0.1 mol.) of 2-diethylamino-1-phenylethanol in 100 ml. of benzene at a rate sufficient to maintain reflux. After heating under reflux for 3 hr., the benzene was removed and the residue treated with 250 ml. of water, cautiously basified with 40% aqueous sodium hydroxide and the separated free base extracted with five 60-ml. portions of ether. The combined extracts were dried (anhydrous magnesium sulfate), filtered, and distilled to give 74% of product, b.p. 194-195° (0.2 mm.).

2-Diethylamino-1-phenylethyl diphenylacetate methiodide (Compound 32). To a cooled solution of 3.9 g. (0.01 mol.) of 2-diethylamino-1-phenylethyl diphenylacetate in 20 ml. of acetonitrile was added 1 ml. (0.016 mol.) of methyl iodide. The solution was allowed to stand 20 hr. at room temperature and then poured into 150 ml. of dry ether. Trituration of the precipitated gum with several additional portions of dry ether gave 4.9 g. (93%) of product, m.p. 154- 159° .

2-Piperidino-1-phenylethyl α -chloro- α, α -diphenylacetate hydrochloride (Compound 40). A solution of 19.9 g. (0.075 mol.) of α -chlorodiphenylacetyl chloride in 70 ml. of acetonitrile was added to a suspension of 14.3 g. (0.07 mol.) of 2-piperidino-1-phenylethanol in 30 ml. of acetonitrile. After storage at 20° for 24 hr. there was obtained 30.2 g. of product.

2-Diethylamino-1-phenylethyl benzilate hydrochloride (Compound 46). A suspension of 18 g. (0.039 mol.) of 2-diethylamino-1-phenylethyl α -chloro- α, α -diphenylacetate hydrochloride in 900 ml. of water upon warming on a steam bath for 20 min., yielded a clear solution. Sodium chloride (180 g.) was then added and the precipitate and solution extracted with a total of 2 l. of chloroform. The chloroform was removed and the residue recrystallized (isopropyl alcohol) to give 13.8 g. (80%) of product; m.p. 164-165°.

2-Diethylamino-1-phenylethyl benzilate methiodide (Compound 47). Methyl iodide (2.9 g., 0.02 mol.) was added to a cooled solution of 5.4 g. (0.013 mol.) of 2-diethylamino-1phenylethyl benzilate in 26 ml. of acetonitrile. Upon storage for 20 hr. at 20° and scratching, the product crystallized, and was separated and recrystallized (isopropyl alcohol) to give 4.1 g. (58%) of product; m.p. 178-179°. Acknowledgment. The authors wish to thank Dr. G. Ungar and his staff for the pharmacological results of the screening of the compounds, and E. Chodos and S. Herbstman for their technical assistance.

Organic Research Division U. S. Vitamin & Pharmaceutical Corp. Yonkers 1, N. Y.

Bicarbonate-catalyzed Displacement of a Nitro Group of 1,3,5-Trinitrobenzene

PATRICK T. IZZO

Received May 28, 1959

During an investigation of methods for the selective reduction of one of the nitro groups of symtrinitrobenzene, reduction by means of sodium sulfide and sodium bicarbonate in aqueous methanol was tried.¹ Among the reaction products none of the desired 3,5-dinitroaniline could be detected, but 3-amino-5-nitroanisole was isolated in 20%yield. Since the displacement of aromatic nitro groups by alcohols has previously been reported to occur only in strongly alkaline media,^{2,3} this result was unexpected. The conditions for this displacement were then investigated and at the same

⁽¹⁾ H. H. Hodgson and E. R. Ward, J. Chem. Soc., 794 (1945) used this method for the mono-reduction of dinitroand trinitronaphthalenes.

⁽²⁾ C. A. Lobry de Bruyn and F. H. van Leent, Rec. trav. chim., 14, 150 (1895).

⁽³⁾ F. Reverdin, Org. Syntheses, Coll. Vol. I, 219 (1941).